

Land Surface Waves: A quantitative tool

E. Mouton, G. Durand and J. ADAMY SISMOCEAN SAS - France

Geo2006 - Bahreïn Geophysical Techniques on Land I

Introduction

Land surface wave: Rayleigh wave

- 1) Properties
- 2) Numerical Inversion
- 3) Results

Conclusion

Introduction

Equipments

Seismic recorder (3 Geodes MGOS)

Streamer (72 geophones 4.5 Hz)

- 3 seismic recorders GEODES (3 x 24 channels)
- MGOS acquisition software
- 3 streamers for 24 receivers equally spaced from 1 to 3 meters
- 72 geophones 4.5hz (8 spares)
- Laptop
- Battery

Multichannels Acquisition Surface Wave (MASW)

- •The propagation is function of the geometry (layer thickness) and shear properties of the soil.
- •The penetration is function of the wavelength

Land surface wave dispersion

P-tau transform or "slant stack" (velocity spectral analysis)

Dispersivity

Numerical model

Layer 1 : ρ1 ; z1 ; Vp1 ; Vs1

Layer 2 : ρ2 ; z2 ; Vp2 ; Vs2

Layer i : pi ; zi ; Vpi ; Vsi

Layer n : ρn ; zn ; Vpn ; Vsn

Substrate : ρ ; Vp ; Vs

Layer i:

ρi: density

zi: layer base position

Vpi : P wave velocity

Vsi : S wave velocity

Equations of continuity of displacement and stress lead to a system of equations. The resolution of this system give access to the model dispersive curve.

Automated inversion by iterative procedure minimize the difference between the theoretical and experimental dispersion curve

Major parameters (95%): thickness, shear wave velocity

Thickness variations

Thickness variations

Vp = 1000 m/s Vs = 150 m/s $\rho = 1800 \text{ kg/m3}$

Vp = 2000 m/s Vs = 400 m/s $\rho = 2000 \text{ kg/m3}$

Vs1 variations

10 m

Vp = 1000 m/s Vs = 150 / 300 m/s $\rho = 1800 \text{ kg/m3}$

Vp = 2000 m/s Vs = 400 m/s $\rho = 2000 \text{ kg/m3}$

Rayleigh surface waves: summary of the main properties

- 1) Major parameters:
- layers thickness
- shear wave velocity
- 2) Depth investigation depends on the frequency range

depth max # wavelength (λ) = interface wave velocity / frequency

Seismic refraction and MASW (G and E modulus)

Small strain shear modulus Go using different methods

Micro tremor produced by a car

Signal

Interpretation using micro tremor

Vs (m/s) Function of depth

1 display using 72 receivers

48 vertical Vs profiles

2D Shear wave velocity profiles

Very shallow Penetration (1 display) • 1 m

Shallow Penetration (3 displays) • 2 m

DCOS: Inhomogeneities detection (cavities, under consolidated soils)

Without inhomogeneity

With an inhomogeneity

Analyse realised quickly and without any numerical inversions

DCOS results

Combination of both DCOS and Vs results

o N

Conclusion

- DCOS or Vs interpretation are non intrusive methods,
- Easy to adapt the display to the site
- Direct correlation with measurements using seismic cone, crosshole and laboratory tests,
- Less expensive than the cross hole,
- Shear wave velocity inversions can be detected,
- Large survey area can performed using gimballed geophones,
- Different type of sources : hammer blow, dynamite or natural noise,
- Natural noise or micro tremor permit to work in noisy conditions (urban area, industrial plants),
- Using the micro tremor, cavities, under consolidated soil can be located.

O E S / S

Conclusion

Land surface wave survey (Vs profiles) and DCOS method are well adapted to qualify quickly a site :

- Pipeline route
- Check embankment or sea wall
- Development of industrial terminal : LNG...